Name: \qquad
Period: \qquad

Where was the object at 4 seconds? 14 meters
When did the object reach 8 meters? 2 sec
Find the slope of the graph (must show work) $\begin{array}{lll}\text { slope }=\text { rise } / \text { run } & \Delta y=14-8=6 \mathrm{~m} & \text { slope }=6 \mathrm{~m} / 2 \mathrm{sec} \\ \text { slope }=\Delta y / \Delta x & \Delta x=4-2=2 \mathrm{sec} & \text { slope }=3 \mathrm{~m} / \mathrm{s}\end{array}$
What does the slope you just found stand for? m / s means speed

If you drop a full bottle of water and an empty bottle of water, which one hits the ground first and why? They hit at the same time; acceleration of gravity is same for all object, heavy or light.

A car travels 88 meters in 11 seconds. Find the car's speed.
$S=D / T=88 \mathrm{~m} / 11 \mathrm{sec} \quad S=8 \mathrm{~m} / \mathrm{s}$
You travel from Maine (100 miles away) to Vermont (300 miles away), in 4 hours. Calculate your speed.
$S=\Delta D / \Delta T \quad S=200 \mathrm{mi} / 4 \mathrm{hr}=50 \mathrm{mi} / \mathrm{hr}$
$\Delta D=300 \mathrm{mi}-100 \mathrm{mi}=200 \mathrm{mi}$
A bike goes $12 \mathrm{~m} / \mathrm{s}$ for 6 seconds.
Calculate how far the bike traveled.
$S=D / T$
$D=S T=(12 \mathrm{~m} / \mathrm{s})(6 \mathrm{sec})=72 \mathrm{~m}$
A plane stops from 300 mph in 15 seconds.
Calculate the planes acceleration.
$a=\Delta S / \Delta T \quad a=-300 / 15=-20 \mathrm{mph} / \mathrm{sec}$
$\Delta S=-300 \mathrm{mph}$ (slowing down)

Name the six steps of the Scientific Method:
Research/ Question/ Hypothesis/ Experiment/ Data/ Conclusion
(Really Quiet Hypos Eat Dark Chocolate)
Name the six Simple Machines: SAW LIP
Screw Lever
wheel and Axle Incline Plane (ramp) Wedge Pulley

If you go to another planet what would change? Weight or mass? Because weight depends on gravity.
If you were in space what would stay the same? Weight or mass? Your mass is your matter (your atoms) and they don't change.

Which of Newton's Three Laws Applies?
3 A paddle-wheel boat pushes on the water and the water pushes back to move the boat. (equal and opp. forces)
$\underline{2}$ Fighter pilots feel massive amounts of force when their planes turn quickly. $(F=m a)$

1 A rolling ball hits your leg hard to stop. (inertia)
Using $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, find the weight of a 3 kg mass.
$F_{w}=m g=(3 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)=30 \mathrm{~N}$

A 35 kg bike accelerates at $5 \mathrm{~m} / \mathrm{s}^{2}$. With what force was the person pedaling?
$F=m a=(35 \mathrm{~kg})\left(5 \mathrm{~m} / \mathrm{s}^{2}\right)=175 \mathrm{~N}$

If 40 N is pushing to the right and friction is 10 N , find the net force and acceleration of a 6 kg object.
Fnet $=40 \mathrm{~N}-10 \mathrm{~N}$

$$
\text { Fnet }=30 \mathrm{~N} \text { right }
$$

$$
\begin{aligned}
& F=m a \\
& 30 \mathrm{~N}=(6 \mathrm{~kg}) a \\
& a=30 \mathrm{~N} / 6 \mathrm{~kg}=5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Name: \qquad
Period: \qquad

A 5 kg ball is thrown $11 \mathrm{~m} / \mathrm{s}$. Find momentum.
$p=m \nu$
$p=(5 \mathrm{~kg})(11 \mathrm{~m} / \mathrm{s})=55 \mathrm{kgm} / \mathrm{s}$

What is the Law of Conservation of Momentum?
Momentum is conserved in a closed system. OR $p_{\text {before }}=p_{\text {after }}$ (a girl on ice skates slides into a girl standing still. Afterward, the moving girl's momentum is shared by the two.)
What is the Law of Conservation of Energy? Never created, never
destroyed, energy can only be transformed (into different kinds of energy). OR $E_{\text {before }}=E_{\text {after }}$ If you start with 100 J , you'll end with 100 J .
A ball on the top of a hill has potential energy; when it falls down the energy has been transformed into kinetic energy. The Law of Conservation of Energy says that the amounts of these two energies are equal.

Which of the four forces are doing work on the object? $B+C$ Why? A and D are not in the direction of the motion.

1. Conduction; 2. Convection; 3. Radiation

3 _ From electromagnet radiation (light rays).

1 _ Putting your hand on a hot car.

2 _ In a pot of water.
2 _ Liquids and gases become less dense when hot and rise, causing currents.
Does heat rise? NO What does rise? Hot air rises
What is thermal equilibrium? Two objects at equal temperature.
Heat always moves from hot to cold OR cold to hot?

What are the charges of the second objects?

What is electricity? Moving electrons
What is the difference between parallel and series circuits?
Parallel - multiple electricity paths/ if 1 thing off, others on
Series-only 1 path/ if 1 thing off, all things off
Where does light come from?
Electrons falling from high energy orbits to low energy orbits.

Harmonic (H), Linear (L), or Wave (W) motion?
Person running: L_{-}Ocean waves: W \quad X-rays: W
The moon: H
Pendulum: H
A swing: H
A car moving: L
Bird flying: L
Thermal; Nuclear; Radiant; Mechanical; Chemical; Electrical
M__ An acorn in a tree. \qquad Fusion in the sun.

E \qquad Energy from a wall power plug.

R___ The light of the sun.
T __ Something hot.
C \qquad In a piece of wood.

A 8 kg cart is rolling $5 \mathrm{~m} / \mathrm{s}$. Calculate kinetic energy.
$E_{k}=(1 / 2) m v^{2}$ (TAKS Chart says: $E k=m v^{2} / 2$ they are same)
$E_{k}=(1 / 2)(8 \mathrm{~kg})(5 \mathrm{~m} / \mathrm{s})^{2}$
$E_{k}=4 \times 25=100 \mathrm{~J}$

A 30 N rock is moved 4 meters. How much work is done? $W=F d=30 \mathrm{~N} \times 4 \mathrm{~m}=120 \mathrm{~J}$

How much energy was used to move the rock? $120 J(W=E)$
It would take 120 J of energy to do 120 J of work.
If done in 3 seconds, how much power was used?
$P=W / t$
$P=120 \mathrm{~J} / 3 \mathrm{sec}$
$P=40$ watts
$\overline{\text { A } 2 \text { kg rock on a } 6 \text { meter ledge has how much potential energy? }}$
$E p=m g h$ (says GPE on formula chart)
$E p=(2 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s} 2)(6 \mathrm{~m})$
$E p=20 \times 6=120$ Joules
How much kinetic energy can it have if it falls? 120 J

What's the total charge of an object with 14 electrons and 6 protons? 8 more electrons than protons, so negative 8.

An atom that loses electrons becomes positive/negative.
An atom that gains electrons becomes positive/negative

Increases (I) Or	Increasing resistance \underline{D} current Decreases (D) Decreasing resistance \underline{I} current
Increasing voltage \underline{I} current Decreasing voltage \underline{D} current	
How big a battery is needed to produce 2 amps through a 4 ohm light bulb? $V=I R=(2 A)(4 \Omega)=8 v$ A 12 volt battery produces what current through a 6Ω resistor? $I=V / R($ from formula chart $)$ $I=12 v / 6 \Omega=2$ amps	

