Name: \qquad
Period: \qquad

Name: \qquad
\qquad

A piece of wood is burned and releases 55 joules of chemical energy. 30 J is transformed into thermal energy, 15 J is transformed into mechanical energy. By the Law of Conservation of Energy, how much energy becomes radiant energy? $E_{\text {before }}=E_{\text {after }}$ Must be 55 J after, so $55 \mathrm{~J}-30 \mathrm{~J}-15 \mathrm{~J}=10 \mathrm{~J}$ of radiant energy.

You increase the current in an electromagnet. The strength of the electromagnet increases or decreases?

Series or Parallel?
$\mathrm{V}_{\mathrm{T}}=24 \mathrm{~V}$
$\mathrm{R}_{\mathrm{T}}=8 \Omega$
$\mathrm{I}_{\mathrm{T}}=\mathrm{V} / \mathrm{R}=3 \mathrm{~A}-$
$\mathrm{P}=\mathrm{VI}=72 \mathrm{w}-$
\qquad
\qquad

Naffet equals Gorts divided Cintros
How much Naffet does a 12 lyr box have when given $4 \mathrm{tr} / \mathrm{i}$.
$n=G / C=12 \mathrm{lyr} / 4 \mathrm{tr} / \mathrm{i}=3 \mathrm{kurls}$
(This not a real equation. It's an exercise in reading equations.)

Mark 1 cycle of the wave.
Starting at 0.75 m , where does the 2 nd cycle end: 2.75 m Number of complete cycles: 4
Wavelength: 1 m
Amplitude: 2 m

Find the speed of a 12 Hz wave with a 5 m wavelength. $v=f \lambda=(12 \mathrm{~Hz})(5 \mathrm{~m})=60 \mathrm{~m} / \mathrm{s}$

Is the person doing work?
Y _ When pushing a 1000 N car 20 meters?
Y _ When lifting a rock off the ground?
$\mathrm{N}_{\text {_ }}$ When holding a book in their hands?
A person is hammering nails a long way from you. It takes 2 seconds for the sound to get to you. How far away are they?
$S=D / T \quad$ speed of sound $=340 \mathrm{~m}$
so, $D=T S=340 \times 2=680 \mathrm{~m}$

Make these half as loud: 100 dB to 80 dB 35 dB to $\underline{15 \mathrm{~dB}}$.

In 2 seconds, a 3 N force pushes for 6 m to cause a 25 kg object to end up going $10 \mathrm{~m} / \mathrm{s}$.

1) Find the momentum of the object
$p=m v=25 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}=250 \mathrm{kgm} / \mathrm{s}$
2) Calculate the object's final kinetic energy.
$E k=1 / 2(m)(v)^{2}$
$E k=1 / 2(25 \mathrm{~kg})(10)^{2}=1 / 2(25)(100)=25(50)=1250 \mathrm{~J}$
3) A how much work is done to accelerate the object?
$W=F d=3 N \times 6 \mathrm{~m}=18 \mathrm{~J}$
4) How much power was used on the object?
$P=W / t=18 \mathrm{~J} / 2 \mathrm{sec}=9 \mathrm{watts}$

\rightarrow| Where will the income ray go? C. |
| :--- |
| \longrightarrowWhat is the dot called?
 Focal point or focus
 Why does the light bend?
 refraction
 Concave or convex lens? |

Find its period: $\underline{T=1 / f=1 / 200=0.005 \mathrm{sec}}$

What harmonic is this? 4th (4 antinodes)

Could a human hear this frequency? Yes
Mark the nodes and anti-nodes.
Mark one wavelength.
How many wavelengths total is it? $\underline{2}$
Find the fundamental frequency:
$f_{f}=200 / 4=50 \mathrm{~Hz}$

5th harmonic frequency:

200 Hz

