Magnetic Fields Practice Worksheet - Solutions

Part 1: Draw an arrow in the "compass" circles to designate the direction of the magnetic field at those locations near the permanent magnets:
1.

2.

3.

\leftarrow

(1)

Part 2: Draw an arrow (or dot, or X) in the "compass" circles to designate the direction of the magnetic field at those locations near these moving charges and current-carrying wires (use right hand rule \#1). Let circles with a dot in them represent direction out of the page and circles with an X in them represent direction into the page:
4. out of the 5 .

6.

7.

8. Current into the page
†

10. Current in a wire moves from the back window to the front white board. A compass is place underneath the wire on the floor, which way will it point?

Toward the cabinets
11. Current in a wire moves from the floor to the ceiling in the middle of the class. A compass is placed near the white board, which way will it point?

Toward the cabinets
Part 3: State the direction of the magnetic FORCE on these moving charges or current-carrying

 wires when near these external magnetic fields (use right hand rule \#2). Circles with a dot in them represent directions out of the page and circles with an X in them represent directions into the page. B is the letter that designates magnetic field:
12.

13.

14.

17.

Field out 18. Protons move from the side board to the cabinet wall while the floor of the room is of the page North Pole of a magnet. Which way are the protons forced to move?
16.

toward the front board
19. Current in a wire moves from the ceiling to the floor while the white board is the SSouth Pole of a magnet. Which way does the wire move? toward side field out of page to the left- toward board 20. Electrons move from the white board to the back window while the overhead screen is a South Pole of a magnet. Which way are the electrons forced to move?

either \vec{B} out of page or
e-move parallel
and $F=0 \mathrm{~N}$

toward sidle board
front board

