Electrostatics Notes
1 - Charges and Coulomb's Law
Ancient Greeks discovered that if amber (fossilized sap) is rubbed it will attract small objects. This is similar to when you run a comb through your hair...it will then attract bits of lint or dust. WHY?!?

Clearly this attraction is due to some FORCE at work. In this case it is electrostatic force which exists between electrically charged objects.

Conductors are materials that. allow electrons to flow.

A negative charge is caused by..an
excess of electrons.

Insulators are materials that...impede electron flow.
A positive charge is caused by...a lack of electrons.

It is possible to build up a charge on insulators because electrons cannot...
easily flow off of $(-)$ or onto (t) an insulator.
When a vinyl strip is rubbed with fur or wool the rod gains an excess of electrons and therefore is negative. If an acetate strip is rubbed with silk then it will lose electrons and become \qquad positive.

The Law of Charges states:
(1) Like charges repel.
(2) Opposite charges attract.
${ }^{(3)}$ Neutral charges are attracted to charged (tor -) objects.

But what about that so-called amber effect? Why are seemingly uncharged objects attracted to charged amber (or combs for that matter)?
It has to do with something called... INDUCTION!
charged with
(extra electrons
Consider a rubber balloon that has been rubbed on someone's hair and a tin can.

Note that the electrons on the can...are able to move freely so that as the can rolls a + charge always faces the balloon.

Other examples of electrostatic charges in everyday life include:
(1) Rubbing your feet on the carpet then touching a doorknob.
(2) Jumping on a trampoline Then stepping on the motel rail.
${ }^{(3)}$ When you pull your clothes out of the dryer, the sock sticks to your sweater.

Ok enough playing around, where's the formulas?!?
Coulomb determined that the force between two charged objects is proportional to their charges and inversely proportional to the square of their distances or:

There are two important things to notice from this equation.

$$
F_{E}=\frac{K q_{1} q_{2}}{r^{2}}
$$

Where:

$$
\begin{aligned}
\mathrm{q}_{1} & =1^{\text {st }} \text { charge, in Coulombs }(\mathrm{C}) \\
\mathrm{q}_{2} & =2^{\text {nd }} \text { charge, " } \\
\mathrm{r} & =\text { distance between charges } \\
\mathrm{k} & =\text { Coulomb's Constant } \\
& =9.0 \times 10^{9} \mathrm{~N} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{c}^{2}}
\end{aligned}
$$

First, this equation is quite similar to... universal g nevitation

$$
F_{y}=\frac{G m_{1} m_{2}}{r^{2}}
$$

Second, electrostatic forces are much stronger than gravitational forces.

$$
G=6.67 \times 10^{-31} \frac{\mathrm{Nm}_{\mathrm{m}} \mathrm{~b}^{2}}{} \text { whereas } K=9.0 \times 10^{9} \frac{\mathrm{~N}_{\mathrm{m}^{2}}^{\mathrm{c}^{2}}}{}
$$

There is a very important difference between gravitational and electrostatic forces:
Gravity ALWAYS...attracts
Electrostatic force can..attract or repels
When solving for electrostatic forces we will NOT...use $+/$ - signs of charges
even though force is a vector.
Instead we will determine the direction of the force based on...
Whether it is an attraction or repulsion

Example:
Two 85 kg students are 1.0 m apart. What is the gravitational force between them?

$$
\begin{aligned}
F_{g} & =\frac{G m_{1} m_{2}}{r^{2}}=\frac{\left(6.67 \times 10^{-11}\right)(85)(85)}{(1.0)^{2}} \\
& =4.82 \times 10^{-7} \mathrm{~N}
\end{aligned}
$$

If these two students each have a charge of $2.0 \times 10^{-3} \mathrm{C}$, what is the electrostatic force between them?

$$
\begin{aligned}
F_{E} & =\frac{K q_{1} q_{2}}{r^{2}}=\frac{\left(9.0 \times 10^{9}\right)\left(2.0 \times 10^{-3}\right)\left(2.0 \times 10^{-3}\right)}{(1.0)^{2}} \\
& =36000 \mathrm{~N}
\end{aligned}
$$

Example:
Two point charges of $1.8 \times 10^{-6} \mathrm{C}$ and $2.4 \times 10^{-6} \mathrm{C}$ produce a force of $2.2 \times 10^{-3} \mathrm{~N}$ on each other. How far apart are these two charges?

$$
\begin{aligned}
F_{E} & =\frac{K q_{1} q_{2}}{r^{2}} \\
V & =\sqrt{\frac{K q_{1} q_{2}}{F_{E}}} \\
& =\sqrt{\frac{\left(9.0 \times 10^{9}\right)\left(1.8 \times 10^{-6}\right)\left(2.4 \times 10^{-6}\right)}{\left(2.2 \times 10^{-3}\right)}} \\
& =4.2 \mathrm{~m}
\end{aligned}
$$

Example:
A charge of $1.7 \times 10^{-6} \mathrm{C}$ is placed $2.0 \times 10^{-2} \mathrm{~m}$ from a charge of $2.5 \times 10^{-6} \mathrm{C}$ and $3.5 \times 10^{-2} \mathrm{~m}$ from a charge of -2.0×10^{-6} as shown.

(B)
(c)

$$
2.5 \times 10^{-6} \mathrm{C} \quad-2.0 \times 10^{-6} \mathrm{C}
$$

since $A+B$ are positive
they repel
What is the net electric force on the 1.7×10^{-6} charge?

$$
\begin{aligned}
F_{n e} & =\frac{F_{A B}-F_{A C}}{} \\
& =\frac{K_{q_{A} q_{B}}}{r_{A B}^{2}}-\frac{K q_{A} q_{c}}{r_{A C}^{2}} \\
& =\frac{\left(9.0 \times 10^{9}\right)\left(1.7 \times 10^{-6}\right)\left(2.5 \times 10^{-6}\right)}{\left(2.0 \times 10^{-2}\right)^{2}}-\frac{\left(9.0 \times 10^{9}\right)\left(1.7 \times 10^{-6}\right)\left(2.0 \times 10^{-6}\right)}{\left(3.5 \times 10^{-2}\right)^{2}} \begin{array}{l}
\text { don if user } \\
\text { negative sign }
\end{array} \\
& =\frac{71 N}{}
\end{aligned}
$$

