Electrostatics Notes

2 - Electric Field on a Single Charge

There are many similarities between gravitational and electrostatic forces. One such similarity is that both forces can be exerted on objects that are not in contact.

In the same way that any mass is surrounded by a gravitational field, we will imagine that any charge object is surrounded by an electric field.

Similar to gravitational fields, an electric field will depend on:
size of and distance to the charge.
In fact we define an electric field as the force per unit charge:
this is just like grave fields: $g=\frac{F_{g}}{m}$

Where:

$$
\vec{E}=\frac{K q}{r^{2}}
$$

In the case of electric fields we are dealing with another example of a \qquad -.
Therefore the field is a vector quantify
In order to show this we always draw the field lines as \qquad arrows .

Again there is an important difference between gravitational fields and electric fields due to the fact that...

We therefore define the direction of an electric field as
Would move in that ficil.

the direction a positive charge

1
1
1
1

1
1

1

You will remember that the strength of a vector field is indicated by the density of the arrows, therefore the field is always strongest...

Example:
What is the electric field strength at a point where a 2.00 uC charge experiences an electric force of $5.30 \times 10^{-4} \mathrm{~N}$?

$$
F_{E}=\vec{E}_{q}
$$

$\vec{E}=\frac{F_{E}}{q}=\frac{5.30 \times 10^{-4} \mathrm{~N}}{2.00 \times 10^{-6} \mathrm{C}}$

$$
=265 \mathrm{~N} / \mathrm{c}
$$

Example:
At a distance of $7.50 \times 10^{-1} \mathrm{~m}$ from a small charged object the electric field strength is $2.10 \times 10^{4} \mathrm{~N} / \mathrm{C}$. At what distance from this same object would the electric field strength be $4.20 \times 10^{4} \mathrm{~N} / \mathrm{C}$?

