Electrostatics Notes

2 – Electric Field on a Single Charge

There are many similarities between **gravitational** and *electrostatic* forces. One such similarity is that both forces can be exerted on objects that are not in contact.

In the same way that any mass is surrounded by a **gravitational field**, we will imagine that any charge object is surrounded by an **electric field**.

this is just like grav fields:

 $g = \frac{fg}{m}$

Similar to gravitational fields, an electric field will depend on: **Size of** and **distance to** the charge.

In fact we define an electric field as the force per unit charge:

Where:

We can substitute in Coloumb's Law to get:

Ē	8	$\frac{kq}{r^2}$	

In the case of electric fields we are dealing with another example of a _	force	field	
Therefore the field is a <u>Vector</u> <u>quantity</u>			
In order to show this we always draw the field lines as			

Again there is an important difference between gravitational fields and electric fields due to the fact that...

We therefore define the direction of an electric field as ... the direction a positive charge would Yhat. field. MOVE in +

You will remember that the strength of a vector field is indicated by the density of the arrows, therefore the field is always strongest...

Example:

What is the electric field strength at a point where a - 2.00 uC charge experiences an electric force of $5.30 \times 10^{-4} \text{ N}$?

 $F_{E} = \tilde{E}_{g}$ $\tilde{E} = \frac{F_{E}}{g} = \frac{5.30 \times 10^{-4} N}{2.00 \times 10^{-1} C}$ $= 265 \frac{V}{C}$

Example:

At a distance of 7.50×10^{-1} m from a small charged object the electric field strength is 2.10×10^4 N/C. At what distance from this same object would the electric field strength be 4.20×10^4 N/C?

$$f_{1} = 0.750m$$

$$f_{1} = 0.750m$$

$$F_{1} = 2.10\times10^{4} W/c$$

$$F_{2} = ?$$

$$F_{2} = 4.20\times10^{4} W/c$$

$$F_{1} = \frac{k_{2}}{r_{1}^{2}} \quad q = \frac{F_{1}r_{1}^{2}}{K} = 1.3125\times10^{6} C$$

$$F_{2} = \frac{k_{2}}{r_{2}^{2}} \quad r_{2} = \sqrt{\frac{k_{2}}{E_{2}}} = 0.53m$$