Relative Velocity and Riverboat Problems

Read from Lesson 1 of the Vectors and Motion in Two-Dimensions chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/vectors/u311f.html
http://www.physicsclassroom.com/Class/vectors/u311g.html

MOP Connection: Vectors and Projectiles: sublevel 6 (and maybe sublevel 5)

1. Planes fly in a medium of moving air (winds), providing an example of relative motion. If the speedometer reads $100 \mathrm{mi} / \mathrm{hr}$, then the plane moves $100 \mathrm{mi} / \mathrm{hr}$ relative to the air. But since the air is moving, the plane's speed relative to the ground will be different than $100 \mathrm{mi} / \mathrm{hr}$. Suppose a plane with a $100 \mathrm{mi} / \mathrm{hr}$ air speed encounters a tail wind, a head wind and a side wind. Determine the resulting velocity (magnitude and CCW direction) of the plane for each situation.

CCW Direction:

Side Wind

2. The situation of a plane moving in the medium of moving air is similar to a motorboat moving in the medium of moving water. In a river, a boat moves relative to the water and the water moves relative to the shore. The result is that the resultant velocity of the boat is different than the boat's speedometer reading, thanks to the movement of the water that the boat is in. In the diagram below, a top view of a river is shown. A boat starts on the west side (left side) of the river and heads a variety of directions to get to the other side. The river flows south (down). Match the boat headings and boat speeds to the indicated destinations. Use each letter once.

Boat Heading	Boat Speed	Destimation (A, B, C, Dor E)
\longrightarrow	$14 \mathrm{mi} / \mathrm{hr}$	
\longrightarrow	$7 \mathrm{mi} / \mathrm{hr}$	
\longrightarrow	$7 \mathrm{mi} / \mathrm{hr}$	
\longrightarrow	$20 \mathrm{mi} / \mathrm{hr}$	
\longrightarrow	$12 \mathrm{mi} / \mathrm{hr}$	

3. A pilot wishes to fly due North from the Benthere Airport to the Donthat Airport. The wind is blowing out of the Southwest at $30 \mathrm{mi} / \mathrm{hr}$. The small plane averages a velocity of $180 \mathrm{mi} / \mathrm{hr}$. What heading should the pilot take? Use a sketch to help solve.
A^{4}
B \uparrow
c
1

Vectors and Projectiles

4. A riverboat heads east on a river that flows north. The riverboat is moving at $5.1 \mathrm{~m} / \mathrm{s}$ with respect to the water. The water moves north with respect to the shore at a speed of $3.6 \mathrm{~m} / \mathrm{s}$.
a. Determine the resultant velocity of the riverboat (velocity with respect to the shore).
b. If the river is 71.0 m wide, then determine the time required for the boat to cross the river.
c. Determine the distance that the boat will travel downstream.
5. Suppose that the boat attempts this same task of crossing the river ($5.1 \mathrm{~m} / \mathrm{s}$ with respect to the water) on a day in which the river current is greater, moving at $4.7 \mathrm{~m} / \mathrm{s}$ with respect to the shore. Determine the same three quantities - (a) resultant velocity, (b) time to cross the river, and (c) distance downstream.
6. For a boat heading straight across a river, does the speed at which the river flows effect the time required for the boat to cross the river? \qquad Explain your answer.
7. Repeat the same three riverboat calculations for the following two sets of given quantities.

Velocity of boat (w.r.t. water) $=3.2 \mathrm{~m} / \mathrm{s}$, East	Velocity of boat (w.r.t. water) $=2.6 \mathrm{~m} / \mathrm{s}$, West
Velocity of river (w.r.t. shore) $=4.4 \mathrm{~m} / \mathrm{s}$, South	Velocity of river (w.r.t. shore) $=4.2 \mathrm{~m} / \mathrm{s}$, South
Width of river $=127 \mathrm{~m}$	Width of river $=96 \mathrm{~m}$
a. Resultant velocity: magnitude = \qquad direction $=$ \qquad	a. Resultant velocity: magnitude = \qquad direction $=$ \qquad
b. Time to cross river $=$	b. Time to cross river $=$
c. Distance downstream $=$	c. Distance downstream =

